Part Number Hot Search : 
4034B SMDJ90CA 74LVT B65287 LTC35 0RNBSAC CDRH12 40T03GJ
Product Description
Full Text Search
 

To Download OP282GSZ-REEL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  dual/quad, low power, high speed jfet operational amplifiers op282/op482 rev. h information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ?1991C2010 analog devices, inc. all rights reserved. features high slew rate: 9 v/s wide bandwidth: 4 mhz low supply current: 250 a/amplifier maximum low offset voltage: 3 mv maximum low bias current: 100 pa maximum fast settling time common-mode range includes v+ unity-gain stable 14-ball wafer level chip scale for quad applications active filters fast amplifiers integrators supply current monitoring general description the op282/op482 dual and quad operational amplifiers feature excellent speed at exceptionally low supply currents. the slew rate is typically 9 v/s with a supply current of less than 250 a per amplifier. these unity-gain stable amplifiers have a typical gain bandwidth of 4 mhz. the jfet input stage of the op282/op482 ensures that the bias current is typically a few picoamps and is less than 500 pa over the full temperature range. the offset voltage is less than 3 mv for the dual amplifier and less than 4 mv for the quad amplifier. with a wide output swing (within 1.5 v of each supply), low power consumption, and high slew rate, the op282/op482 are ideal for battery-powered systems or power-restricted applica- tions. an input common-mode range that includes the positive supply makes the op282/op482 an excellent choice for high- side signal conditioning. the op282/op482 are specified over the extended industrial temperature range. the op282 is available in the standard 8-lead, narrow soic and msop packages. the op482 is available in the pdip and narrow soic packages, as well as a 14-ball wlcsp. pin connections 1 2 3 4 5 6 7 8 out a ?in a +in a v? op-482 v+ out b ?in b +in b op282 00301-001 figure 1. 8-lead, narrow-body soic (s-suffix) [r-8] 00301-002 out a 1 ?in a 2 +in a 3 v? 4 v+ 8 out b 7 ?in b 6 +in b 5 op282 top view (not to scale) figure 2. 8-lead msop [rm-8] 1 2 3 4 5 6 7 14 13 12 11 10 9 8 out a ?in a +in a v+ +in b ?in b out b out d ?in d +in d v? +in c ?in c out c op482 ? + + ? ? + + ? 00301-003 figure 3. 14-lead pdip (p-suffix) [n-14] 1 2 3 4 5 6 7 14 13 12 11 10 9 8 out a ?in a +in a v+ +in b ?in b out b out d ?in d +in d v? +in c ?in c out c op482 00301-004 figure 4. 14-lead, narrow-b ody soic (s-suffix) [r-14] top view (ball side down) not to scale 00301-048 ball a 1 corne r out a +in d v? +in c out c out d ?in a v+ ?in b out b ?in d +in a +in b ?in c a b c d e f 1 2 3 g h j figure 5. 14-ball wlcsp [cb-14-2]
op282/op482 rev. h | page 2 of 16 table of contents features .............................................................................................. 1 ? applications....................................................................................... 1 ? general description ......................................................................... 1 ? pin connections ............................................................................... 1 ? revision history ............................................................................... 2 ? specifications..................................................................................... 3 ? electrical characteristics............................................................. 3 ? absolute maximum ratings............................................................ 4 ? thermal resistance ...................................................................... 4 ? esd caution...................................................................................4 ? typical performance characteristics ..............................................5 ? applications information .............................................................. 12 ? high-side signal conditioning ................................................ 12 ? phase inversion........................................................................... 12 ? active filters ............................................................................... 12 ? programmable state variable filter ......................................... 13 ? outline dimensions ....................................................................... 14 ? ordering guide .......................................................................... 16 ? revision history 9/10rev. g to rev. h added wlcsp ....................................................................universal changes to features section............................................................ 1 changes to general description section ...................................... 1 added figure 5; renumbered sequentially .................................. 1 changes to large-signal voltage gain parameter, table 1 ......... 3 changes to table 2, thermal resistance section, and table 3 ... 4 change to figure 30 ......................................................................... 9 added figure 53.............................................................................. 16 changes to ordering guide .......................................................... 16 7/08rev. f to rev. g changes to phase inversion section ............................................ 12 deleted figure 45............................................................................ 12 added figure 45 and figure 46..................................................... 12 updated outline dimensions ....................................................... 14 changes to ordering guide .......................................................... 16 10/04rev. e to rev. f deleted 8-lead pdip .........................................................universal added 8-lead msop .........................................................universal changes to format and layout.........................................universal changes to features.......................................................................... 1 changes to pin configurations....................................................... 1 changes to general description .................................................... 1 changes to specifications ................................................................ 3 changes to absolute maximum ratings ....................................... 4 changes to table 3............................................................................ 4 added figure 5 through figure 20; renumbered successive figures............................................................................. 5 updated figure 21 and figure 22 ....................................................7 updated figure 23 and figure 27 ....................................................8 updated figure 29 .............................................................................9 updated figure 35 and figure 36 ................................................. 10 updated figure 43 .......................................................................... 11 changes to applications information ......................................... 12 changes to figure 44...................................................................... 12 deleted op282/op482 spice macro model section ....................9 deleted figure 4.................................................................................9 deleted op282 spice marco model ............................................. 10 updated outline dimensions....................................................... 14 changes to ordering guide .......................................................... 14 10/02rev. d to rev. e edits to 8-lead epoxy dip (p-suffix) pin......................................1 edits to ordering guide ...................................................................3 edits to outline dimensions......................................................... 11 9/02rev. c to rev. d edits to 14-lead soic (s-suffix) pin .............................................1 replaced 8-lead soic (s-suffix)................................................. 11 4/02rev. b to rev. c wafer test limits deleted ................................................................2 edits to absolute maximum ratings ..............................................3 dice characteristics deleted............................................................3 edits to ordering guide ...................................................................3 edits to figure 1.................................................................................7 edits to figure 3.................................................................................8 20-position chip carrier (rc suffix) deleted ........................... 11
op282/op482 rev. h | page 3 of 16 specifications electrical characteristics at v s = 15.0 v, t a = 25c, unless otherwise noted; applies to both a and g grades. table 1. parameter symbol conditions min typ max unit input characteristics offset voltage v os op282 0.2 3 mv op282, ?40c t a +85c 4.5 mv op482 0.2 4 mv op482, ?40c t a +85c 6 mv input bias current i b v cm = 0 v 3 100 pa v cm = 0 v 1 500 pa input offset current i os v cm = 0 v 1 50 pa v cm = 0 v 1 250 pa input voltage range ?11 +15 v common-mode rejection ratio cmrr ?11 v v cm +15 v, ?40c t a +85c 70 90 db large-signal voltage gain a vo r l = 10 k, v o = 13.5 v 20 v/mv r l = 10 k, ?40c t a +85c 15 v/mv offset voltage drift v os /t 10 v/c bias current drift i b /t 8 pa/c output characteristics output voltage high v oh r l = 10 k 13.5 13.9 v output voltage low v ol r l = 10 k ?13.9 ?13.5 v short-circuit limit i sc source 3 10 ma sink ?12 ?8 ma open-loop output impedance z out f = 1 mhz 200 power supply power supply rejection ratio psrr v s = 4.5 v to 18 v, ?40c t a +85c 25 316 v/v supply current/amplifier i sy v o = 0 v, ?40c t a 85c 210 250 a supply voltage range v s 4.5 18 v dynamic performance slew rate sr r l = 10 k 7 9 v/s full-power bandwidth bw p 1% distortion 125 khz settling time t s to 0.01% 1.6 s gain bandwidth product gbp 4 mhz phase margin ? m 55 degrees noise performance voltage noise e n p-p 0.1 hz to 10 hz 1.3 v p-p voltage noise density e n f = 1 khz 36 nv/hz current noise density i n 0.01 pa/hz 1 the input bias and offset c urrents are characterized at t a = t j = 85c. bias and offset currents are guaranteed but not tested at ?40c.
op282/op482 rev. h | page 4 of 16 absolute maximum ratings table 2. parameter rating supply voltage 18 v input voltage 18 v differential input voltage 1 36 v output short-circuit duration indefinite storage temperature range ?65c to +150c operating temperature range ?40c to +85c junction temperature range ?65c to +150c lead temperature (soldering 60 sec) 300c 1 for supply voltages less than 18 v, the absolute maximum input voltage is equal to the supply voltage. stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. thermal resistance ja is specified for the worst-case conditions, that is, a device in socket for pdip. ja is specified for a device soldered in the circuit board for soic_n, msop, and wlcsp packages. this was measured using a standard 4-layer board. table 3. package type ja jc unit 8-lead msop [rm] 142 45 c/w 8-lead soic_n (s-suffix) [r] 120 45 c/w 14-lead pdip (p-suffix) [n] 83 39 c/w 14-lead soic_n (s-suffix) [r] 112 35 c/w 14-ball wlcsp [cb] 1, 2 70 16 c/w 1 simulated thermal numbers per jesd51-9. 2 junction-to-board thermal resistance. esd caution
op282/op482 rev. h | page 5 of 16 typical performance characteristics frequency (hz) open-loop gain (db) 1k ?40 ?20 60 80 10k 1m 10m 00301-005 100k 20 40 0 v s = 15v t a = 25c phase (degrees) ?45 135 45 90 0 ?90 180 figure 6. op282 open-loop ga in and phase vs. frequency temperature (c) open-loop gain (v/mv) ?75 0 5 35 45 ?25 100 125 00301-006 25 15 25 10 v s = 15v r l = 10k ? 20 30 40 7550 0 ?50 figure 7. op282 open-loop gain vs. temperature load capacitance (pf) overshoot (%) 0 0 10 70 80 200 400 500 00301-007 30 50 20 40 60 300 100 v s = 15v r l = 2k ? v in = 100mv p-p a vcl = 1 t a = 25c +os ?os figure 8. op282 small-signal overshoot vs. load capacitance frequency (hz) closed-loop gain (db) 1k ?30 ?20 60 70 10k 1m 10m 00301-008 100k 20 40 0 v s = 15v t a = 25c ?10 50 10 30 a vcl = 100 a vcl = 10 a vcl = 1 figure 9. op282 closed-loop gain vs. frequency temperature (c) slew r a te (v/s) ?75 0 5 30 ?25 100 125 00301-009 25 15 25 10 v s = 15v r l = 10k ? c l = 50pf 20 7550 0 ?50 ?sr +sr figure 10. op282 slew rate vs. temperature temperature (c) input bias current (pa) ?75 0.1 1000 ?25 100 125 00301-010 25 1 100 10 7550 0 ?50 v s = 15v v cm = 0v figure 11. op282 input bias current vs. temperature
op282/op482 rev. h | page 6 of 16 frequency (hz) voltage noise density (nv/ hz) 10 1 1000 100 10k 00301-011 1k 100 10 v s = 15v t a = 25c figure 12. op282 voltage noise density vs. frequency common-mode voltage (v) input bias current (pa) ?15 0.1 1000 10 15 00301-012 ?5 1 100 10 5 0 ?10 v s = 15v t a = 25c figure 13. op282 input bias current vs. common-mode voltage supply voltage (v) supply current ( a) 0 450 480 20 00301-013 10 455 465 460 15 5 t a = 25c 470 475 figure 14. op282 supply cu rrent vs. supply voltage supply voltage (v) output voltage swing (v) 0 ?20 20 20 00301-014 10 ?15 ?5 ?10 15 5 t a = 25c r l = 10k ? 0 15 v oh v ol 5 10 figure 15. op282 output voltage swing vs. supply voltage frequency (hz) output impedance ( ? ) 1k 0.1 100 1000 10k 1m 100 00301-015 100k 1 10 v s = 15v t a = 25c a vcl = 100 a vcl = 10 a vcl = 1 figure 16. op282 closed-loop ou tput impedance vs. frequency temperature (c) supply current ( a) ?50 450 480 125 00301-016 25 455 75 0 460 475 465 470 ?25 50 100 figure 17. op282 supply current vs. temperature
op282/op482 rev. h | page 7 of 16 load resistance ( ? ) absolute output voltage (v) 0 6 16 1k 10k 100 00301-017 2 4 v s = 15v t a = 25c v ol v oh 12 8 10 14 figure 18. op282 absolute output voltage vs. load resistance frequency (hz) psrr (db) 1k ?60 40 140 10k 1m 100 00301-018 100k 0 20 ?40 ?20 60 100 120 80 ?psrr +psrr v s = 15v t a = 25c figure 19. op282 psrr vs. frequency temperature (c) sho r t-circuit current (ma) ?50 0 14 125 00301-019 25 4 75 0 6 12 8 10 ?25 50 100 2 sink source v s = 15v t a = 25c figure 20. op282 short-circ uit current vs. temperature frequency (hz) maximum output swing (v p-p) 100 0 5 25 30 1k 100k 1m 00301-020 10k 15 20 10 v s = 15v t a = 25c r l = 10k ? a vcl = 1 figure 21. op282 maximum ou tput swing vs. frequency frequency (hz) cmrr (db) 1k ?60 40 140 10k 1m 100 00301-021 100k 0 20 ?40 ?20 60 100 120 80 v s = 15v t a = 25c figure 22. op282 cmrr vs. frequency v os (v) units ?2000 0 200 00301-022 ?400 80 ?1200 120 160 40 400 1200 2000 v s = 15v t a = 25c 300 op282 (600 op amps) 0 figure 23. op282 vos distribution, soic_n package
op282/op482 rev. h | page 8 of 16 tcv os (v/c) units 0 0 400 00301-023 20 80 16 120 160 40 28 32 36 24 200 280 320 360 240 41 2 8 v s = 15v 300 op282 (600 op amps) figure 24. op282 tcvos distribution, soic_n package frequency (hz) 1k 10k 100k 1m 100m 10m 80 open-loop gain (db) phase (degrees) 90 135 0 45 180 60 40 20 0 v s = 15v t a = 25c 00301-024 figure 25. op482 open-loop ga in and phase vs. frequency 125 100 50 75 25 0 ?75 ?50 ?25 temperature ( c) open-loop gain (v/mv) 30 35 25 20 15 10 5 v s = 15v r l = 10k ? 00301-025 0 figure 26. op482 open-loop gain vs. temperature overshoot (%) 500 0 300 100 200 400 70 10 0 60 50 40 30 20 load capacitance (pf) a vcl = 1 negative edge v s = 15v r l = 2k ? v in = 100mv p-p 00301-026 a vcl = 1 positive edge figure 27. op482 small-signal overshoot vs. load capacitance frequency (hz) 1k 10k 100k 1m 100m 10m 60 closed-loop gain (db) 40 20 10 0 50 30 ?10 ?20 00301-027 a vcl = 10 a vcl = 1 a vcl = 100 v s = 15v t a = 25c figure 28. op482 closed-loop gain vs. frequency ?sr ?75 temperature (c) ?50 ?25 0 25 50 75 100 125 5 10 25 15 20 +sr slew r a te (v/s) 00301-028 v s = 15v r l = 10k ? c l = 50pf 0 figure 29. op482 slew rate vs. temperature
op282/op482 rev. h | page 9 of 16 1000 1.0 0.1 100 10 input bias current (pa) temperature (c) 125 ?25 ?50 25 0 75 100 00301-029 v s = 15v v cm = 0v ?75 50 figure 30. op482 input bias current vs. temperature 60 55 phase margin (degrees) ?75 temperature (c) ?50 ?25 0 25 50 75 100 125 v s = 15v r l = 10k ? gbw gain bandwidth product (mhz) 50 45 40 5.0 4.5 4.0 3.5 3.0 00301-030 ? m figure 31. op482 phase margin and gain bandwidth product vs. temperature frequency (hz) 10 100 1k 10k 80 0 20 10 40 30 50 60 70 voltage noise density (nv/ hz) 00301-031 v s = 15v t a = 25c figure 32. op482 voltage noise density vs. frequency common-mode voltage (v) 15 ?15 0 5 10 ?10 ?5 input bias current (pa) 100 1 1000 0.1 10 00301-032 v s = 15v t a = 25c figure 33. op482 input bias current vs. common-mode voltage supply voltage (v) 15 0 10 5 rel 2 0 a tive supply current (i sy ) 1.10 0.90 1.15 0.85 1.00 1.05 0.95 00301-033 t a = 25c figure 34. op482 relative supply current vs. supply voltage supply voltage (v) 15 0 1 0 5 20 ?5 output voltage swing (v) 0 15 5 10 20 ?10 ?20 ?15 00301-034 r l = 10k ? t a = 25c figure 35. op482 output voltage swing vs. supply voltage
op282/op482 rev. h | page 10 of 16 impedance ( ? ) 600 0 300 100 200 500 400 1m 1k 100 100k 10k frequency (hz) a vcl = 10 00301-035 v s = 15v t a = 25c a vcl = 1 a vcl = 100 figure 36. op482 closed-loop ou tput impedance vs. frequency rel a tive supply current (i sy ) temperature ( c) 1.20 0.80 0.90 0.85 1.00 0.95 1.05 1.10 1.15 ?50 ?75 125 100 755025 0 ?25 00301-036 v s = 15v figure 37. op482 relative supply current vs. temperature load resistance ( ? ) 10k 1k 100 absolute output voltage (v) 16 0 2 8 6 10 12 14 4 positive swing negative swing 00301-037 v s = 15v t a = 25c figure 38. op482 maximum output voltage vs. load resistance psrr (db) 100 20 40 0 20 80 60 1m 1k 100 100k 10k frequency (hz) +psrr 00301-038 v s = 15v ? v = 100mv t a = 25c ?psrr figure 39. op482 power supply rejection ratio (psrr) vs. frequency sho r t-circuit current (ma) 20 15 5 10 sink source temperature (c) 75 ?75 0 25 50 ?50 ?25 100 125 00301-039 v s = 15v 0 figure 40. op482 short-circui t current vs. temperature maximum output swing (v) 30 0 15 5 10 25 20 100k 10k 1k 1m frequency (hz) 00301-040 v s = 15v t a = 25c a vcl = 1 r l = 10k ? figure 41. op482 maximum ou tput swing vs. frequency
op282/op482 rev. h | page 11 of 16 cmrr (db) 100 ?20 40 0 20 80 60 1m 1k 100 100k 10k frequency (hz) 00301-041 v s = 15v t a = 25c v cm = 100mv figure 42. op482 common-mode rejection ratio (cmrr) vs. frequency units 0 600 700 300 100 200 400 500 2000 ?1600 ?2000 1600 1200800400 0 ?400 ?800 ?1200 v os (v) 00301-045 v s = 15v t a = 25c 300 op482 (1200 op amps) figure 43. op482 vos distribution, pdip package units 320 0 80 40 160 120 200 240 280 0 00301-043 322824 12 2016 84 tcv os (v/c) figure 44. op482 tcv os distribution, pdip package
op282/op482 rev. h | page 12 of 16 applications information the op282 and op482 are dual and quad jfet op amps that are optimized for high speed at low power. this combination makes these amplifiers excellent choices for battery-powered or low power applications that require above average performance. applications benefiting from this performance combination include telecommunications, geophysical exploration, portable medical equipment, and navigational instrumentation. high-side signal conditioning many applications require the sensing of signals near the positive rail. op282 and op482 were tested and are guaranteed over a common-mode range (?11 v v cm +15 v) that includes the positive supply. one application where such sensing is commonly used is in the sensing of power supply currents. therefore, the op282/op482 can be used in current sensing applications, such as the partial circuit shown in figure 45 . in this circuit, the voltage drop across a low value resistor, such as the 0.1 shown here, is amplified and compared to 7.5 v. the output can then be used for current limiting. 15 v 100k ? 500k ? 0.1 ? 500k ? 100k ? r l 1/2 op282 00301-046 figure 45. high-side signal conditioning phase inversion most jfet input amplifiers invert the phase of the input signal if either input exceeds the input common-mode range. for the op282/op482, a negative signal in excess of 11 v causes phase inversion. this is caused by saturation of the input stage, leading to the forward-biasing of a gate-drain diode. phase reversal in the op282/op482 can be prevented by using schottky diodes to clamp the input terminals to each other and to the supplies. in the simple buffer circuit shown in figure 46 , d1 protects the op amp against phase reversal. r1, d2, and d3 limit the input current when the input exceeds the supply rail. the resistor should be selected to limit the amount of input current below the absolute maximum rating. 00301-042 d1 in5711 v+ op282/ op482 v + v out v in v? v? d2 in5711 r1 10k ? d3 in5711 figure 46. phase reversal solution circuit 00301-044 time (200s/div) voltage (5v/div) 2 v s = 15v v in v out figure 47. no phase reversal active filters the wide bandwidth and high slew rates of the op282/op482 make either one an excellent choice for many filter applications. there are many active filter configurations, but the four most popular configurations are butterworth, elliptic, bessel, and chebyshev. each type has a response that is optimized for a given characteristic, as shown in table 4 . table 4. active filter configurations type selectivity overshoot phase amplitude (pass band) amplitude (stop band) butterworth moderate good maximum flat chebyshev good moderate nonlinear equal ripple elliptic best poor equal ripple equal ripple bessel (thompson) poor best linear
op282/op482 rev. h | page 13 of 16 programmable state variable filter the circuit shown in figure 48 can be used to accurately program the q, the cutoff frequency (f c ), and the gain of a two- pole state variable filter. op482 devices have been used in this design because of their high bandwidths, low power, and low noise. this circuit takes only three packages to build because of the quad configuration of the op amps and dacs. the dacs shown are used in the voltage mode; therefore, many values are dependent on the accuracy of the dac only and not on the absolute values of the dacs resistive ladders. this makes this circuit unusually accurate for a programmable filter. adjusting dac 1 changes the signal amplitude across r1; therefore, the dac attenuation times r1 determines the amount of signal current that charges the integrating capacitor, c1. this cutoff frequency can now be expressed as ? ? ? ? ? ? = 256 2 1 d1 r1c1 f c where d1 is the digital code for the dac. the gain of this circuit is set by adjusting d3. the gain equation is ? ? ? ? ? ? = 256 d3 r5 r4 gain dac 2 is used to set the q of the circuit. adjusting this dac controls the amount of feedback from the band-pass node to the input summing node. note that the digital value of the dac is in the numerator; therefore, zero code is not a valid operating point. ? ? ? ? ? ? = d2r3 r2 q 256 r5 2k ? 1/4 op482 v in 1/4 dac8408 high pass c1 1000pf r4 2k ? r6 2k ? r7 2k ? 1/4 op482 r1 2k ? 1/4 op482 1/4 dac8408 1/4 op482 r1 2k ? 1/4 op482 1/4 dac8408 1/4 op482 c1 1000pf low pass 1/4 op482 1/4 op482 1/4 dac8408 band pass r2 2k ? r3 2k ? 0 0301-047 figure 48. programmable state variable filter
op282/op482 rev. h | page 14 of 16 outline dimensions compliant to jedec standards mo-187-aa 0.80 0.60 0.40 8 0 4 8 1 5 pin 1 0.65 bsc seating plane 0.38 0.22 1.10 max 3.20 3.00 2.80 coplanarity 0.10 0.23 0.08 3.20 3.00 2.80 5.15 4.90 4.65 0.15 0.00 0 .95 0 .85 0 .75 figure 49. 8-lead mini small outline package [msop] (rm-8) dimensions shown in millimeters controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-a a 012407-a 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 0.50 (0.0196) 0.25 (0.0099) 45 8 0 1.75 (0.0688) 1.35 (0.0532) seating plane 0.25 (0.0098) 0.10 (0.0040) 4 1 85 5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497) 1.27 (0.0500) bsc 6.20 (0.2441) 5.80 (0.2284) 0.51 (0.0201) 0.31 (0.0122) coplanarity 0.10 figure 50. 8-lead standard small outline package [soic_n] narrow body s-suffix (r-8) dimensions shown in millimeters and (inches)
op282/op482 rev. h | page 15 of 16 compliant to jedec standards ms-001 controlling dimensions are in inches; millimeter dimensions (in parentheses) are rounded-off inch equivalents for reference only and are not appropriate for use in design. corner leads may be configured as whole or half leads. 070606-a 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.070 (1.78) 0.050 (1.27) 0.045 (1.14) 14 1 7 8 0.100 (2.54) bsc 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 0.060 (1.52) max 0.430 (10.92) max 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.015 (0.38) gauge plane 0.210 (5.33) max seating plane 0.015 (0.38) min 0.005 (0.13) min 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) figure 51. 14-lead plastic dual in-line package [pdip] p-suffix (n-14) dimension shown in inches and (millimeters) controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-ab 060606-a 14 8 7 1 6.20 (0.2441) 5.80 (0.2283) 4.00 (0.1575) 3.80 (0.1496) 8.75 (0.3445) 8.55 (0.3366) 1.27 (0.0500) bsc seating plane 0.25 (0.0098) 0.10 (0.0039) 0.51 (0.0201) 0.31 (0.0122) 1.75 (0.0689) 1.35 (0.0531) 0.50 (0.0197) 0.25 (0.0098) 1.27 (0.0500) 0.40 (0.0157) 0.25 (0.0098) 0.17 (0.0067) coplanarity 0.10 8 0 45 figure 52. 14-lead standard small outline package [soic_n] narrow body s-suffix (r-14) dimensions shown in millimeters and (inches)
op282/op482 rev. h | page 16 of 16 032509-a a b c d e f 0.645 0.600 0.555 1.165 1.128 1.090 2.160 2.123 2.085 1 2 3 bottom view (ball side up) top view (ball side down) 0.287 0.267 0.247 1.60 bsc seating plane 0.693 bsc 0.40 bsc 0.20 bsc 0.3465 bsc 0.3465 bsc 0.415 0.400 0.385 0.230 0.200 0.170 0.05 coplanarity ball a1 identifier g h j figure 53. 14-ball wafer level chip scale package [wlcsp] cb-14-2 controlling dimensions are millimeters ordering guide model 1 temperature range package description package option branding op282armz ?40c to +85c 8-lead msop rm-8 a0b op282armz-reel ?40c to +85c 8-lead msop rm-8 a0b op282gs ?40c to +85c 8-lead soic_n s-suffix (r-8) op282gs-reel ?40c to +85c 8-lead soic_n s-suffix (r-8) op282gs-reel7 ?40c to +85c 8-lead soic_n s-suffix (r-8) op282gsz ?40c to +85c 8-lead soic_n s-suffix (r-8) OP282GSZ-REEL ?40c to +85c 8-lead soic_n s-suffix (r-8) OP282GSZ-REEL7 ?40c to +85c 8-lead soic_n s-suffix (r-8) op482acbz-rl ?40c to +85c 14-ball wlcsp cb-14-2 a2j op482acbz-r7 ?40c to +85c 14-ball w lcsp cb-14-2 a2j op482gp ?40c to +85c 14-lead pdip p-suffix (n-14) op482gpz ?40c to +85c 14-lead pdip p-suffix (n-14) op482gs ?40c to +85c 14-lead soic_n s-suffix (r-14) op482gs-reel ?40c to +85c 14-lead soic_n s-suffix (r-14) op482gs-reel7 ?40c to +85c 14-lead soic_n s-suffix (r-14) op482gsz ?40c to +85c 14-lead soic_n s-suffix (r-14) op482gsz-reel ?40c to +85c 14-lead soic_n s-suffix (r-14) op482gsz-reel7 ?40c to +85c 14-lead soic_n s-suffix (r-14) 1 z = rohs compliant part. ?1991C2010 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d00301-0-9/10(h)


▲Up To Search▲   

 
Price & Availability of OP282GSZ-REEL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X